Mathematical Systems

Zero Product Property

If \(AB = 0 \), then \(A = 0 \), or \(B = 0 \), or \(A \) and \(B \) equal zero.

An application of the Zero Product Property will allow us to solve higher degree equations by changing them into multiplication problems whose product is zero.

For example, if I were asked to solve, \(x^2 - x = 12 \). I might have a little trouble. If I changed the problem into a multiplication problem (factoring), I would have

\[
x(x - 1) = 12
\]

I have two numbers multiplied together that equal 12. Through a trial and error process, I might find values of \(x \) that would satisfy the original equation. But, if I used the Zero Product Property, I would be able to solve the problem using the logic we used in third grade – the product is zero if I multiplied by zero.

Rewriting \(x^2 - x = 12 \) to \(x^2 - x - 12 = 0 \), then factoring, I would have the product of two numbers equaling zero rather than 12. By using the third grade logic, I know that one of the two numbers or maybe both of them are zero since the product is zero.

In other words, we would have \((x - 4)(x + 3) = 0 \).

When is \(x - 4 = 0? \) When is the other number \(x + 3 = 0? \)

When you answer those questions, you have found the values of \(x \) that make the open sentence true. Simply put, you solved the equation.

The answer, the solution, the zeros are \(x = 4 \) or \(x = -3 \).