Chapter 4

Angles formed by 2 Lines being cut by a Transversal

Now we are going to name angles that are formed by two lines being intersected by another line called a transversal.

If I asked you to look at the figure above and find two angles that are on the same side of the transversal, one an interior angle (between the lines), the other an exterior angle that were not adjacent, could you do it?

$\angle 2$ and $\angle 4$ are on the same side of the transversal, one interior, the other is exterior – whoops, they are adjacent. How about $\angle 2$ and $\angle 6$?

Those two angles fit those conditions. We call those angles corresponding angles.

Can you name any other pairs of corresponding angles?

If you said $\angle 4$ and $\angle 8$, or $\angle 1$ and $\angle 5$, or $\angle 3$ and $\angle 7$, you’d be right.

Alternate Interior angles are on opposite sides of the transversal, both interior and not adjacent. $\angle 4$ and $\angle 5$ are a pair of alternate interior angles. Name another pair.

Based on the definition of alternate interior angles, how might you define alternate exterior angles?

How about same side interior angles? Can you describe them? One pair of same side interior angles is $\angle 3$ and $\angle 5$, can you name another pair?
Same Side Interior angles are two angles that are on the same side of the transversal, non-adjacent, both interior angles. \(\angle 3 \) and \(\angle 5 \) are one pair and \(\angle 4 \) and \(\angle 6 \) is another pair of same side interior angles.

Parallel lines are lines that are in the same plane and have no points in common.

Skew lines are lines that are not parallel and do not intersect, they do not lie in the same plane.

Angles Pairs formed by Parallel lines

Something interesting occurs if the two lines being cut by the transversal happen to be **parallel**. It turns out that every time I measure the corresponding angles, they turn out to be equal. You might use a protractor to measure the corresponding angles below. Since that seems to be true all the time and we can’t prove it, we’ll write it as an axiom – a statement we believe without proof.

![Diagram](image)

Postulate If two **parallel** lines are cut by a transversal, the corresponding angles are congruent.

![Diagram](image)

Now let’s take this information and put it together and see what we can come up with. Knowing the corresponding angles are congruent, we can use our knowledge of vertical angles being congruent and our knowledge of angles whose exteriors sides lie in a line to find the other angles.
If \(l \parallel m \) and we are given the 80° angle in the left diagram, then we can fill in all the other 80° angles in the right diagram using corresponding angles are congruent and vertical angles are congruent. And two angles whose exteriors sides lie in a line are supplementary.

Example: Given the lines are parallel and the angle measures 50°, find the measure of all the other angles.

\[
\begin{align*}
\text{\begin{tabular}{c|c}
50° & 130° \\
130° & 50° \\
\end{tabular}}
\end{align*}
\]

Begin by filling in the corresponding angles, followed by the vertical angles and finally the angles formed by their exterior sides being in a line – they are supplementary.

NOTICE

The alternate interior angles and the alternate exterior angles have the same measure. Also notice the same side interior angles are supplementary in these examples.
In the last couple of examples we saw the relationships between different angles formed by parallel lines being cut by a transversal. Let’s formalize that information.

Proofs: Alternate Interior Angles

Let’s see, we’ve already learned vertical angles are congruent and corresponding angles are congruent, if they are formed by parallel lines. Using this information we can go on to prove alternate interior angles are also congruent, if they are formed by parallel lines.

What we need to remember is drawing the picture will be extremely helpful to us in the body of the proof. Let’s start.

Theorem
If 2 parallel lines are cut by a transversal, the alternate interior angles are congruent.

By drawing the picture of parallel lines being cut by a transversal, we’ll label the alternate interior angles.

The question is, how do we go about proving $\angle 1 \cong \angle 2$?

Now this is important. We need to list on the picture things we know about parallel lines. Well, we just learned that corresponding angles are congruent when they are formed by parallel lines. Let’s use that information and label an angle in our picture so we have a pair of corresponding angles.
Since the lines are parallel, \(\angle 1 \) and \(\angle 3 \) are congruent. Oh wow, \(\angle 2 \) and \(\angle 3 \) are vertical angles! We have studied a theorem that states all vertical angles are congruent.

That means \(\angle 1 \cong \angle 3 \) because they are corresponding angles and \(\angle 2 \cong \angle 3 \) are congruent because they are vertical angles, that means \(\angle 1 \) must be congruent to \(\angle 3 \).

\[
\angle 1 \cong \angle 3 \\
\angle 2 \cong \angle 3
\]

That would suggest that \(\angle 1 \cong \angle 2 \) by substitution.

Now we have to write that in two columns, the statements on the left side, the reasons to back up those statements on the right side.

Let’s use the picture and what we labeled in the picture and start with what has been given to us, line \(l \) is parallel to \(m \).

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (l \parallel m)</td>
<td>Given</td>
</tr>
<tr>
<td>(\angle 1) and (\angle 2) are alt int (\angle)’s</td>
<td></td>
</tr>
<tr>
<td>2. (\angle 1) and (\angle 3) are corr. (\angle)s</td>
<td>Def of corr. (\angle)s</td>
</tr>
<tr>
<td>3. (\angle 1 \cong \angle 3)</td>
<td>Two (l) lines, cut by (t), corr. (\angle)’s (\cong)</td>
</tr>
<tr>
<td>4. (\angle 3 \cong \angle 2)</td>
<td>Vert (\angle)’s</td>
</tr>
<tr>
<td>5. (\angle 1 \cong \angle 2)</td>
<td>Transitive Prop</td>
</tr>
</tbody>
</table>

Is there a trick to this? Not at all. Draw your picture, label what’s given to you, then fill in more information based on your knowledge. Start your proof with what is given, the last step will always be your conclusion.

Now, we have proved vertical angles are congruent, we accepted corresponding angles formed by parallel lines are congruent, and we just proved alternate interior angles are congruent. Could you prove alternate exterior angles are congruent? Try it. Write the theorem, draw the picture, label the alternate exterior angles, add more information to your picture based on the geometry you know, identify what has been given to you and what you have to prove.
Let’s write those as theorems.

Theorem
If two parallel lines are cut by a transversal, the alternate exterior angles are congruent.

Theorem
If two parallel lines are cut by a transversal, the same side interior angles are supplementary.

Theorem
If a transversal is perpendicular to one of two parallel lines, it is perpendicular to the other line also.

Summarizing, we have:
If *two parallel lines* are cut by a transversal, then the corresponding \angle’s are congruent.
then the alt. int. \angle’s are congruent.
then the alt. ext. \angle’s are congruent.
then the same side int. \angle’s are supplementary.

ABBA

Another way to remember that postulate and those three theorems is by remembering **ABBA**. All the angles marked A have the same measure, all the angles marked B have the same measure, and $A+B = 180$ if $l \parallel m$.

![Diagram](image)

Example:
Given that $m \parallel n$ and the information in the diagram, find the value of x.

![Diagram](image)
Since the two lines are parallel, we know the corresponding angles are congruent, so we know they have the same measure.

\[5x + 10 = 3x + 20\]
\[2x = 10\]
\[x = 5\]

So, to answer the question, \(x = 5\). If I wanted to know the measure of each angle, I would substitute 5 into each expression. Each angle measures 35°

Example: Given \(j \parallel k\) and the information in the diagram, find the value of \(x\).

\[j\]

\[k\]

\[(2x+10)°\]

\[60°\]

In this case, we have two parallel lines being cut by a transversal, we know the alternate interior angles are congruent. We can set those two angles equal and solve the resulting equation.

\[2x + 10 = 60\]
\[2x = 50\]
\[x = 25\]

Example: Given \(l \parallel m\) and the information in the diagram, find the measure of \(\angle CAB\) and \(\angle DBA\).

\[A\]

\[B\]

\[C\]

\[D\]

\[(3x+10)°\]

\[(2x+5)°\]

Same Side Interior angles are supplementary
Since \(\angle CAB \) and \(\angle DBA \) are same side interior angles, we know their sum is 180°

\[
(3x + 10) + (2x + 5) = 180 \\
5x + 15 = 180 \\
5x = 165 \\
x = 33
\]

Remember, the question was NOT to find the value of \(x \), we were to find the measure of each angle, \(\angle CAB \) and \(\angle DBA \). Substituting 33 into those expressions, we have

\[
m\angle CAB = 109° \text{ and } m\angle DBA = 71°
\]

Proving that Lines are Parallel

Earlier we stated the converse of a theorem is not necessarily true, but could be true. As it turns out, many of the theorems and postulates dealing with parallel lines, the converses are also true. We will start with a postulate. This is the converse of the postulate that read; if two parallel lines are cut by a transversal, the corresponding angles are congruent. Now what I will accept as true is if the corresponding angles are congruent, the lines must be parallel.

Postulate

If two lines are cut by a transversal so that the corresponding angles are congruent, the lines are parallel.

The converse of a conditional is not always true, so this development is fortunate. As it turns out, the other three theorems we just studied about having parallel lines converses’ are also true. That leads to the following three theorems.

Theorem

If two lines are cut by a transversal so that the alternate interior angles are congruent, then the lines are parallel.

Theorem

If two lines are cut by a transversal so that the alternate exterior angles are congruent, then the lines are parallel.

Theorem

If two lines are cut by a transversal so that the same side interior angles are supplementary, then the lines are parallel.

Now I have four ways to show lines are parallel; corresponding \(\angle \)'s congruent, alternate interior \(\angle \)'s congruent, alternate exterior \(\angle \)'s congruent, same side interior \(\angle \)'s supplementary.

You should know those theorems because if we know lines are parallel, that will give us equations.
Let’s look at a proof of the theorem concerning alternate interior angles. The other proofs will be very similar.

Example: **Prove the Theorem** If two lines are cut by a transversal so that the alternate interior angles are congruent, then the lines are parallel.

Given: $\angle 1 \equiv \angle 2$

k and j cut by t

Prove: $j \parallel k$

<table>
<thead>
<tr>
<th>STATEMENTS</th>
<th>REASONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. k and j cut by t</td>
<td>Given</td>
</tr>
<tr>
<td>2. $\angle 2 \equiv \angle 3$</td>
<td>Vertical angles \equiv</td>
</tr>
<tr>
<td>3. $\angle 1 \equiv \angle 3$</td>
<td>Transitive Property</td>
</tr>
<tr>
<td>4. $j \parallel k$</td>
<td>2 lines cut by t & corr. \angle’s are \equiv</td>
</tr>
</tbody>
</table>

Remember, your proof does not have to look exactly like mine. For instance, after step 1, I could have put in another step $\angle 2$ and $\angle 3$ are vertical angles. The reason – the definition of vertical angles. The reason for step 3 could have been substitution. My point is a proof is just an argument (deductive reasoning) in which the conclusion follows from the argument.

In a nutshell, we have learned the postulates and theorems dealing with parallel lines are bi-conditional. That is, the converses are also true if the statements were true.

Summarizing and writing those as bi-conditionals, we have:

Two lines cut by a transversal are parallel if and only if the corresponding angles are congruent.

Two lines cut by a transversal are parallel if and only if the alternate interior angles are congruent.
Two lines cut by a transversal are parallel if and only if the alternate exterior angles are congruent.

Two lines cut by a transversal are parallel if and only if the same side interior angles are supplementary.