Derivation - Law of Cosines

Given $\triangle \mathrm{ABC}$, construct an altitude (h), from $\angle B$ to $\overline{A C}$. That altitude forms two right triangles that allows us to use the trig.

$$
\sin \mathrm{C}=\frac{h}{a} \text { or } \mathrm{h}=\mathrm{a} \sin \mathrm{C}
$$

$$
\text { Also, } \cos \mathrm{C}=\frac{a d j}{h y p}
$$

$$
\cos \mathrm{C}=\frac{C D}{a}
$$

$$
\text { so } C D=a \cos C
$$

By the diagram $\mathrm{AC}=\mathrm{b}$ and we just found that $\mathrm{CD}=\mathrm{a} \cos \mathrm{C}$, then

$$
\mathbf{A D}=\mathbf{b}-\mathbf{a} \cos \mathbf{C}
$$

We will use that information to relabel our triangle $\triangle \mathrm{ABC}$

$\triangle \mathrm{BDA}$ is a right triangle, we can use the Pythagorean Theorem to write an equation

$$
(a \sin C)^{2}+(b-a \cos C)^{2}=c^{2}
$$

Squaring the binomial - underlined

$$
a^{2} \sin ^{2} C+b^{2}-2 a b \cos C+a^{2} \cos ^{2} C=c^{2}
$$

Rewriting the equation using the Commutative and associative properties that will result in a trig identity

$$
a^{2} \sin ^{2} C+a^{2} \cos ^{2} C+b^{2}-2 a b \cos C=c^{2}
$$

Factoring a2 out of the first two terms

$$
a^{2}\left(\sin ^{2} C+\cos ^{2} C\right)+b^{2}-2 a b \cos C=c^{2}
$$

Substituting 1 for $\sin ^{2} \mathrm{C}+\cos ^{2} \mathrm{C}$

$$
\begin{gathered}
a^{2}(1)+b^{2}-2 a b \cos C=c^{2} \\
a^{2}+b^{2}-2 a b \cos C=c^{2}
\end{gathered}
$$

OR

$$
\begin{gathered}
\text { Law of Cosines } \\
c^{2}=a^{2}+b^{2}-2 a b \cos C
\end{gathered}
$$

In any triangle the square of a side equals the sum of the squares of the other two sides decreased by twice the product of those sides and the cosine of the included angle.

$$
\begin{aligned}
& a^{2}=b^{2}+c^{2}-2 b c \cos A \\
& b^{2}=a^{2}+c^{2}-2 a c \cos B
\end{aligned}
$$

