Recognizing Patterns

Graphs of 1st degree equations are lines

$$
\begin{gathered}
\mathbf{A x}+\mathbf{B y}=\mathbf{C} \\
\mathbf{y}=\mathbf{m} \mathbf{x}+\mathbf{b}
\end{gathered}
$$

Graphs of 2nd degree equations with only 1 of the variables squared is a parabola

$$
\begin{gathered}
y=a x^{2}+b x+c \\
y=a(x-h)^{2}+k
\end{gathered}
$$

Graphs of 2nd degree equations with both variables squared and coefficients equal is a circle

$$
\begin{gathered}
\mathbf{A x}^{2}+\mathbf{B y} \mathbf{y}^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0} \\
\mathbf{A}=\mathbf{B} \\
(\mathbf{x}-\mathbf{h})^{2}+(\mathbf{y}-\mathbf{k})^{2}=\mathbf{r}^{2}
\end{gathered}
$$

Graphs of $2^{\text {nd }}$ degree equations with both variables squared and coefficients are different with the same signs is an ellipse

$$
\begin{gathered}
A x^{2}+B y^{2}+\mathbf{D x}+\mathbf{E y}+\mathrm{F}=0 \\
\mathbf{A} \neq \mathbf{B} \\
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
\end{gathered}
$$

