$b^{\log _{b} x}=x$	
$10^{\log a}=a$	
1. $10^{\log b}=b$	$10^{\log a b}=a b$
2.	$=a b$
3.	$=\left(10^{\log a}\right)\left(10^{\log b}\right)$
$=10^{\log a+\log b}$	Substitution
4. $\quad \therefore \rightarrow \log a b=\log a+\log b$	Transitive Property Rule Exp.

$$
\log a b=\log a+\log
$$

Therefore, we can say, to find the logarithm of a product of positive numbers, you add the logarithms of the numbers.

That follows our rules of exponents, when you multiply numbers with the same base, you add the exponents.
$10^{\log a}=a$

$$
10^{\log b}=b
$$

$$
10^{\log a / b}=a / b
$$

Again, using the three equalities that are a direct application of $b^{\log _{b} x}=\mathbf{x}$, let's look at what we can develop for division.

1. $\quad 10^{\log a / b}=a / b$
2. $=\frac{10^{\log a}}{10^{\log b}}$
3. $=10^{\log a-\log b}$
4. $10^{\log a / b}=10^{\log a-\log b}$

- Transitive Prop.

$$
\log a / b=\log a-\log b \quad-\operatorname{Exp} \text { Equation }
$$

Knowing that $a=10^{\log a}$. If each side is raised to the power of n, we have

1. $a=10^{\log a}$
2. $\quad a^{n}=\left(10^{\log a}\right)^{n}$
3. $=10^{n \log a}$
4. $\left(10^{\log a}\right)^{n}=10^{n \log a}$
5. $\log a^{n}=n \log a$

Given

Exponent Power Rule
Exp. Raise Power to Power

Substitution

Definition

Sometimes it is helpful to change the base of a logarithm such as $\log _{b} n$ to a logarithm in another base.

$$
\begin{aligned}
\text { Let } \mathbf{x} & =\log _{b} \boldsymbol{n} & & \\
\boldsymbol{b}^{\mathbf{x}} & =\boldsymbol{n} & & \text { - Def of log } \\
\log _{a} \boldsymbol{b}^{\mathbf{x}} & =\log _{a} \mathbf{n} & & \text { - log of both sides } \\
\mathbf{x \operatorname { l o g } _ { a } \boldsymbol { b }} & =\log _{a} \boldsymbol{n} & & \text { - Power rule - logs } \\
\mathbf{x} & =\frac{\log _{a} n}{\log _{a} b} & & \text { - Div Prop. Equality } \\
\log _{b} \boldsymbol{n} & =\frac{\log _{a} n}{\log _{a} b} & & \text { - Substitution }
\end{aligned}
$$

So, we can see to change the base of a logarithm, we have

$$
\log _{b} n=\frac{\log _{a} n}{\log _{a} b}
$$

