$$b^{\log_b x} = x$$

$10^{\log a} = \boldsymbol{a}$	$10^{\mathrm{log}b} = \mathbf{b}$	$10^{\log ab} = ab$

1.	$10^{\log ab} = ab$	Given
2.	= (10 ^{loga})(10 ^{logb})	Substitution
3.	= 10 ^{loga} + logb	Mult Rule Exp.

4. $\therefore \rightarrow \log ab = \log a + \log b$ Transitive Property

$\log ab = \log a + \log a$

Therefore, we can say, to find the logarithm of a product of positive numbers, you add the logarithms of the numbers.

That follows our rules of exponents, when you multiply numbers with the same base, you add the exponents.

$$10^{\log a} = a$$
 $10^{\log b} = b$ $10^{\log a/b} = a/b$

Again, using the three equalities that are a direct application of $b^{\log_b X} = x$, let's look at what we can develop for division.

1. $10^{\log a/b} = a/b$ Given

2. =
$$\frac{10^{\log a}}{10^{\log b}}$$
 Substitution

3. = $10^{\log a - \log b}$ **Div Rule Exp.**

4. $10^{\log a/b} = 10^{\log a - \log b}$ - Transitive Prop.

 $\log a/b = \log a - \log b$ - Exp Equation

Knowing that $a = 10^{\log a}$. If each side is raised to the power of n, we have

1.	$a = 10^{\log a}$	Given
2.	$a^n = (10^{\log a})^n$	Exponent Power Rule
3.	$= 10^{n\log a}$	Exp. Raise Power to Power
4.	$(10^{\log a})^n = 10^{n\log a}$	Substitution
5.	$\log a^n = n \log a$	Definition

Sometimes it is helpful to change the base of a logarithm such as $log_b n$ to a logarithm in another base.

Let
$$x = \log_b n$$

 $b^x = n$ - Def of log
 $\log_a b^x = \log_a n$ - log of both sides
 $x \log_a b = \log_a n$ - Power rule - logs
 $x = \frac{\log_a n}{\log_a b}$ - Div Prop. Equality
 $\log_b n = \frac{\log_a n}{\log_a b}$ - Substitution

So, we can see to change the base of a logarithm, we have

$$\log_b n = \frac{\log_a n}{\log_a b}$$