Graph $y = x^2 + 3$

Again, we can make an xy-chart on the left or plot points

Graph
$$y = (x - 2)^2$$

By making an xy-chart, we can plot points.

Parent Fct		$\underline{\mathbf{y}} = (\mathbf{x} - 2)^2$	
X	<u>y</u>	X	y
-2	4	0	4
-1	1	1	1
0	0	2	0
1	1	3	1
2	4	4	4

Here's what we need to recognize:

 $y = a(x - h)^2 + k$ is a parabola in Vertex Form

1. The graph of an equation with only one variable squared is a parabola

2. The vertex can be found using translations from the parent function, $y = x^2$, with vertex (0,0), by moving the graph vertically using *k* and horizontally using *h*. The new vertex is at (h, k)

3. The graph is symmetric with respect to the line x = h. The line passes through the vertex and is called axis or line of symmetry.

 $y = a(x - h)^2 + k$, has a vertex at (h, k).

Recognizing the equation as a parabola and finding the vertex makes graphing a lot easier.

Sketch the graph $y = (x + 1)^2 + 3$

