Graph $y=x^{2}+3$
Again, we can make an xy-chart on the left or plot points

Graph $\mathrm{y}=(\mathrm{x}-2)^{2}$

By making an xy-chart, we can plot points.

Parent Fct	$y=(x-2)^{2}$
$\mathbf{x} \quad \mathbf{y}$	$\mathrm{x} \quad \mathrm{y}$
-2 4	04
-1 1	11
00	20
1	3
24	4

Here's what we need to recognize:

$$
\mathrm{y}=a(\mathrm{x}-h)^{2}+k \text { is a parabola in Vertex Form }
$$

1. The graph of an equation with only one variable squared is a parabola
2. The vertex can be found using translations from the parent function, $y=x^{2}$, with vertex $(0,0)$, by moving the graph vertically using \boldsymbol{k} and horizontally using \boldsymbol{h}. The new vertex is at (h, k)
3. The graph is symmetric with respect to the line $x=\boldsymbol{h}$. The line passes through the vertex and is called axis or line of symmetry.
$\mathrm{y}=a(\mathrm{x}-h)^{2}+k$, has a vertex at (h, k).

Recognizing the equation as a parabola and finding the vertex makes graphing a lot easier.

Sketch the graph $\mathbf{y}=(\mathrm{x}+1)^{2}+3$

