Solving Quadratics by: Completing the Square

Rather than using the ZPP, we saw we could solve quadratics when binomials were squared using the $x^2 = n$, so $x = \pm \sqrt{n}$ method

Procedure

- 1. Coefficient of quadratic term must be 1
- 2. Take half of linear term
- 3. Write it down under the linear term
- 4. Square half the linear term
- 5. Add it to the polynomial
- 6. Write as a binomial square, use the number you wrote under the linear term

Example Complete the square and write as a binomial square; $x^2 + 6x$

$$x^{2} + 6x + \frac{3^{2}}{+3}$$

+3
$$x^{2} + 6x + \frac{9}{-1} = (x + 3)^{2}$$

1. $x^2 + 8x +$ ____

- 2. $x^2 + 10x +$ ____
- 3. $x^2 6x +$ ____
- 4. $x^2 7x +$ ____
- 5. $x^2 + 5x +$ ____