Graphing Parabolas - General Form

$$
\mathrm{y}=a \mathrm{x}^{2}+b \mathrm{x}+c
$$

Remembering the Quadratic Formula; the $-\mathrm{b} / 2 \mathrm{a}$ is the midpoint of the x intercepts - the line of symmetry. So rather than going through the process of Completing the Square to find the vertex, all we need to do is use $-b / 2 a$ as find the x-coordinate of the vertex and substitute that value in the equation to find the y-coordinate of the vertex. From there, pick a convenient point, like zero, to find a second point. Then use symmetry to find a third point.

Strategy - In the equation $y=a x^{2}+b x+c$: find the vertex, pick a convenient point and then use symmetry to graph.

Procedure

1. Find the vertex letting $x=-b / 2 a$ to find x-coordinate
2. Use $b / 2 a$ to find the y coordinate of the vertex
3. Pick a convenient point, 0 if possible, to find a second point
4. Use symmetry to find 3 rd point

Sketch the graph

Example Graph $\mathbf{y}=3 \mathbf{x}^{2}-12 \mathrm{x}+13$

1. Using $-\mathrm{b} / 2 \mathrm{a}$ for $\mathrm{x}:-(-12) / 6=2$ and substitute to find y , $3(2)^{2}-12(2)+13=1$
So the vertex, V is at $(2,1)$
2. Let $x=0$, then $y=13$; $(0,13)$
3. Use symmetry, $3^{\text {rd }}$ point is $(4,13)$
4. Sketch the graph

