Logarithmic Equations; $\quad \log =$ number

Algorithm

1. Rewrite the equation as a single log
2. Raise the base to the number
3. Set that equal to the argument
4. Solve the resulting equation
5. Check your solution

Determine the solution set over the Real Numbers

1. $\log x+\log 5=1$
2. $\log (9 x)+\log x=4$
3. $\log _{3} x-\log _{3} 4=2$
4. $\quad 3 \log _{5} \mathrm{x}-\log _{5} \mathrm{x}=2$
5. $\quad \log _{7}(x+1)+\log _{7}(x-5)=1$
6. $\quad \log _{6} x+\log _{6}(x-9)=2$
7. $2 \log _{2} \mathrm{x}-\log _{2}(\mathrm{x}+3)=2$
8. $\log _{4}(2 x+2)-\log _{4}(x-2)=1$

Logarithms; $\quad \log =\mathbf{l o g}$

Algorithm

1. Rewrite the equation as a single log on each side
2. Drop the log notation
3. Set the arguments equal
4. Solve the resulting equation
5. Check your solution

Find the solution set over the Real Numbers

1. $\log 6+\log x=\log 12$
2. $\log _{3}(4 \mathrm{x})+\log _{3} 5=\log _{3} 40$
3. $\log _{5} 56-\log _{5} x=\log _{5} 7$
4. $\log 18-\log (3 x)=\log 2$
5. $\log _{8}(x+1)-\log _{8} x=\log _{8} 4$
6. $3 \log \mathrm{x}=\log 64$
