Chapter 1

Points, Lines \& Planes

As we begin any new topic, we have to familiarize ourselves with the language and notation to be successful. My guess that you might already be pretty familiar with many of the terms about to be introduced in this section, the biggest difference is that we will formalize our understanding and introduce notation that will enable to express that knowledge quickly. Let's look at one of our first elements in geometry, a point.

A point is pictured by a dot. While a dot must have some size, the point it represents has no size. Points are named by capital letters.

A line extends indefinitely. A line, containing infinitely many points, is considered to be a set of points, hence it has no thickness. A line can be named by a lower case letter or by two points contained in the line.

k

This line could be called line k or , read "line RS". Notice that does not begin or end at either of the points R or S .

A plane is a flat surface. Such things as table tops, desks, windowpanes, and walls suggest planes. A plane, like the aforementioned, does not have thickness and extends indefinitely.

The terms point, line, and plane are undefined terms. Other terms in geometry are defined. Notice the following definitions are based on the undefined terms.

Space- The set of all points.

Collinear points - A set of points that lie on one line.
Coplanar points - A set of points that lie on a plane.
Axioms (postulates) - are basic statements, assumed true without proof.
Theorems- are statements that are proven.
Corollaries - theorems that follow directly from a previous theorem

Subsets of a Line

A point between two other points: Point B , on $\overleftrightarrow{A C}$ is said to be between points A and C .

Segment: Given any two points A and B , segment AB is the set of points consisting of A and B and all the points that lie between A and B . Segment AB is denoted by $\overline{A B}$.

Segment Addition Postulate - A point between two other points: Point B, on $\overline{A C}$ is said to be between points A and C and can be written as $\mathrm{AB}+\mathrm{BC}=\mathrm{AC}$

Sum of the parts is equal to the whole line segment

Example 1 Given: $\mathrm{XP}=10$ and $\mathrm{PY}=8$, find XY
Always draw the picture and label any information given to you.

Now, ask yourself, what relationships have we studied about line segments? The Segment Addition Postulate states a line segment was equal to the sum of its parts.

Therefore we know,
Substituting, we have
or

$$
\begin{aligned}
\mathrm{XP}+\mathrm{PY} & =\mathrm{XY} \\
10+8 & =\mathrm{XY} \\
18 & =\mathrm{XY}
\end{aligned}
$$

Could this be any easier? Let's look at another example.

Example 2 Given: $\mathrm{AC}=12$ and $\mathrm{AB}=4$, find BC

Using the Segment Addition Postulate, we know

$$
\begin{aligned}
\mathrm{AB}+\mathrm{BC} & =\mathrm{AC} . \\
4+\mathrm{BC} & =12 \\
\mathrm{BC} & =8
\end{aligned}
$$

The nice thing about math is its consistency, things don't change! What would problems involving the Segment Addition Postulate look like with some unknowns - algebra?

Example 3 Given: $\mathrm{AT}=\mathrm{x}+9, \mathrm{~TB}=2 \mathrm{x}$, and $\mathrm{AB}=30$, find the value of x.

Looking at the diagram and labeling the information given, we know that
$\mathrm{AT}+\mathrm{TB}=\mathrm{AB} \quad$ by the Segment Addition Postulate

We also know that $\mathrm{AB}=30$ was given to us.
Substituting, we have

$$
\begin{aligned}
\mathrm{AT}+\mathrm{TB} & =\mathrm{AB} \\
(\mathrm{x}+9)+2 \mathrm{x} & =30 \\
3 \mathrm{x}+9 & =30 \\
3 \mathrm{x} & =21 \\
\mathrm{x} & =7
\end{aligned}
$$

If you were asked to find AT or TB , you would just substitue $\mathrm{x}=7$ into those expressions.

Ray: Ray XY, denoted by $\overrightarrow{X Y}$, is the union of and the set of points P for which it is true that Y lies between A and P .

Opposite Rays: $\overrightarrow{S R}$ and $\overrightarrow{S T}$ are called opposite rays if S lies on $\overleftrightarrow{R T}$ between R and T .

CongruentSegments: Segments with equal lengths. If $A B=X Y$, then $A B$ is said to be congruent to $\mathrm{XY}, \overline{A B} \cong \overline{X Y}$

Midpoint of a segment: Point M is the midpoint of $\overline{R S}$ if M lies on $\overline{R S}$ and $R M=M S$.

Bisector of a segment: A line, segment, ray or plane that intersects a segment at its midpoint bisects the segment and is a bisector of the segment .

As you study geometry, I cannot stress enough the importance of you knowing vocabulary and notation to be successful. Also, as you study, be sure to take special note of information that describes relationships. The Segment Addition Postulate described a relationship that allows you to write an equation, is important to know. The same can be said of the definition of midpoint, those relationships allow you to write equations.

So, let's review the symbols-

Symbols

$\overleftrightarrow{A B}$	- line containing A and B
$\overrightarrow{A B}$	- ray with endpoint A, passing through B
$\overrightarrow{A B}$	- segment joining A and B
AB	- distance between A and B

It's very important that you take the time to memorize the notation for lines, line segments, rays, and distance. They will be used throughout the book and are meant to help you communicate mathematically. As we continue in our study, we will be introduced to more vocabulary and notation, if you learn it along the way, as it is introduced, then it will come naturally to you.

Now that we have the vocabulary and notation, let's see how we can use the definitions and postulates we learned to solve problems by using the relationships they described in the form of equations.

Example 4 Given M is the midpoint of $\overline{R S}, \mathrm{RS}=10$, find RM

We know by the Segment Addition Postulate that $R M+M S=R S$. By the definition of midpoint, we know that $R M=M S$.

By substituting RM for MS, we have $R M+R M=R S$

$$
2 \mathrm{RM}=10
$$

$$
R M=5
$$

Rather than looking at that algebraically, it will be quicker to know that either segment would be half the distance of the line segment. We will look at midpoint more examples after we introduce the Ruler Postulate.

Three more terms that we will encounter quite often are axiom, theorem, and postulate.

Axiom (postulate) is a basic assumption in mathematics.
A theorem is a statement that is proved.
A corollary is a statement that can be proved easily by applying a theorem.

In a system of logic, math, the fewer assumptions (axioms) we make without proof, the better the system. But, we have to start somewhere, so let's look at some of our basic assumptions to begin our study of geometry.

Postulate A line contains at least two points, a plane contains at least three points not all on one line, and space contains at least four points not all in one plane.

Postulate Through any two points there is exactly one line.
Postulate Through any three points not on one line there is exactly one plane.
Postulate If two points lie in a plane, then the line joining them lies in the plane.

Postulate If two planes intersect, then their intersection is a line.
When a postulate or theorem is used quite frequently, we often give it a name. For instance, we introduced the Segment Addition Postulate, a postulate with a name because we will refer to again and again.

These postulates we accept as true because they seem to occur all the time and make sense to us. Based on these assumptions, postulates, we will then derive other information.

Theorem If two lines intersect, they intersect in exactly one point.
While that seems to make perfect sense, especially if we draw a picture, we call that a theorem rather than a postulate. The reason is, we can derive it, we can prove it.

Theorem If a point lies outside a line, then exactly one plane contains the point and the line.

Theorem If two lines intersect, exactly one plane contains both lines.

Ruler Postulate - The points on a line can be paired with the real numbers such that:
a. any point can be paired with zero
b. the distance between any two points is equal to the absolute value of the difference of the numbers paired with those points.

All the Ruler Postulate states is that if you have a line, you can pick any point on that line and call the coordinate 0 . And the distance between any two points is equal to the absolute value of the of the difference of those coordinates.

Also $\mathrm{AB}=\mathrm{BA}$, then $\mathrm{AB}=|\mathrm{B}-\mathrm{A}|$ or $|\mathrm{A}-\mathrm{B}||12-4|=8$ or $|4-12|=8$
Example 5 The coordinates of points R and S on a number line are -3 and 7 , find RS.

Using the Ruler postulate, we have $|-3-7|=10$ or $|7-(-3)|=10, R S=10$

Example 6 Points Q and T lie on a number line, if QT $=10$ and the coordinate of Q is 8 , find the possible coordinates of T .

Knowing that $\mathrm{QT}=10$ and the coordinate of Q is 8 , the line segment is 10 units long. If T is located to the right of Q , then T would be $8+10=18$. If T is located to the left of Q , then T would be $8+(-10)=-2$. The possible coordinates of T would be 18 or -2 .

Now that we introduced the Ruler Postulate, let's revisit midpoint and see how we might be able to solve problems.

Example $7 \quad$ Given the diagram, find the midpoint of

Now, we are going to do this problem two ways, the long way and the easy way. Remember, the more you know in math, the easier it gets!
$1^{\text {st }}$ Method - By the Ruler Postulate, $\mathrm{AB}=|11-3|=8$.
Since $A B=8$, half the distance from each end point would be 4 units. Starting from 3 and adding 4, the midpoint would be 7 . Or I could have started from 11 and went 4 units to the left and the midpoint would still be 7 .
$2^{\text {nd }}$ Method - If I did enough of these problems, it may dawn on me that a midpoint may be looked at as the average distance of two line segments, one segment being 3 units long, the other being 11 units. To find the average, midpoint, I add the two lengths 11 and 3 , coordinates, and divide by 2 , which is 7 .

The second way leads us to the midpoint formula- which is finding the average of two numbers.

$$
\text { midpoint }=\frac{x_{1}+x_{2}}{2}
$$

Let's look at another example. I will work it out using Method 2, using method 2, you can probably do the problem in your head.

Example 8 Given the diagram, find the midpoint of $\overline{C D}$

filling in the coordinates for C and D in the midpoint formula, we have

$$
\text { midpoint }=\frac{3+15}{2}
$$

which is $18 / 2=9$. The coordinate midpoint of $\overline{C D}$ is 9 .

The last two examples have been straight-forward applications for finding the midpoint. A slight variation of that might be a problem that gives you an endpoint of a line segment and the midpoint, and asks you to find the other endpoint. To do the problem, all you need to know is the midpoint formula and substitute in the numbers.

Example 9 If M is the midpoint of and the coordinate of C is 5 and the coordinate of the midpoint, M , is 9 , find the coordinate of D .

Drawing the picture and labeling, we must now find the coordinate of D . Using the midpoint formula, we have

$$
M=\frac{C+D}{2}
$$

Now, let's fill in the numbers in the midpoint formula. That's easy enough, the coordinate of the midpoint is 9 and the end point is 5 .

$$
9=\frac{5+D}{2}
$$

Now, let's multiply both sides of the equation by the common denominator to get rid of the fraction.

$$
18=5+\mathrm{D}, \text { so } \mathrm{D}=13
$$

Example 10 Points P, Q and R lie on a number line, Q lies between P and R , if $P R=15$ and $P Q$ is 9 , find $Q R$.

So far, we know two pieces of information that result in relationships, the Segment Addition Postulate and the Midpoint of a line segment. Since nothing was mentioned about a midpoint, it seems logical to try the Segment Addition Postulate to solve this problem.

Since $P R$ is longer than $P Q, Q$ must be between P and R, so we have $\mathrm{PQ}+\mathrm{QR}=\mathrm{PR}$.

Substituting the numbers given to us in the problem, we have

$$
\begin{aligned}
9+\mathrm{QR} & =15 \\
\mathrm{QR} & =6
\end{aligned}
$$

The Ruler Postulate leads us to the next couple of theorems.
Theorem On a ray, there is exactly one point a given distance \boldsymbol{d} from the endpoint of the ray.

Theorem A segment has exactly one midpoint.
We have introduced a lot of new terminology and notation so far in this chapter that you need to be comfortable using. We are not quite done.

There are three pieces of information that lead to relationships in this section, you need to know those relationships. The Segment Addition Postulate can be broken down to the whole equals the sum of the parts. The definition of midpoint divides a line segment into two equal parts AND you should know the midpoint formula.

In middle school, you were introduced to the Pythagorean Theorem: The square of the measure of the hypotenuse of a right trinagle is equal to the sum of the squares of the measures of the legs - commonly written as $\mathbf{c}^{2}=\mathbf{a}^{2}+\mathbf{b}^{2}$. \mathbf{c} is the hypotenuse, the side opposite the right angle, the other sides are called legs, labeled a and b .

That's an important theorem in math that is used in many different contexts. In later chapters, we will see how it was developed and proved. In this chapter, we will use this theorem to introduce the distance formula.

Let's look at a couple of right triangles.

Notice the relationship in the areas of the squares formed by the legs to the area of the square formed by the hypotenuse.
That led us to the Pythagorean Theorem.

We can generalize these observations by labeling the legs a and b and the hypotenuse c to: $\quad \mathrm{c}^{2}=\mathrm{a}^{2}+\mathrm{b}^{2}$

Since the Pythagorean Theorem comes up so often, it's nice to know combinations of numbers that could be sides of right triangles. Those numbers are called Pythagorean Triples.

$$
\begin{array}{llll}
\text { Examples of Pythagorean Triples: } & 3,4,5 & \text { x2 } \quad 6,8,10 \\
& 5,12,13 \\
& 7,2425 \\
& 9,40,41
\end{array}
$$

Knowing those and some of their multiples will often cut down on the arithmetic in solving problems later.

To determine if if 3 sides will form a right triangle, use the longest side as the hypotenuse - c, then determine if the relationship $\mathbf{c}^{2}=\mathbf{a}^{2}+\mathbf{b}^{2}$ is true. If so, the 3 sides form a right triangle. If not, then the 3 sides do not form a right triangle.

The generalization below lead us to the Pythagorean Theorem. And now we will use that to find the distance formula.

If a is the distance along the x -axis, then $\mathrm{a}=\mathrm{x}_{2}-\mathrm{x}_{1}$

If b is the distance along the y-axis, then $b=y_{2}-y_{1}$

And rather than calling the length of the hypotenuse c, we can call it "d" for distance.
$c^{2}=\mathbf{a}^{2}+b^{2}$ making those substitutions, we have taking the square root of both sides

$$
\begin{aligned}
\mathbf{d}^{2} & =\left(\mathbf{x}_{2}-\mathbf{x}_{1}\right)^{2}+\left(\mathbf{y}_{2}-\mathbf{y}_{1}\right)^{2} \\
d & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
\end{aligned}
$$

Distance Formula:

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

That's read, d is equal to the square root of the difference of the x 's squared plus the difference of the y 's squared.

Example 11 Find the distance between the points $\mathrm{A}(2,3)$ and $\mathrm{B}(8,11)$.

$$
\begin{aligned}
& d=\sqrt{(8-2)^{2}+(11-3)^{2}} \\
& d=\sqrt{6^{2}+8^{2}} \\
& d=\sqrt{100} \\
& d=10
\end{aligned}
$$

Example 12 Find the distance between (7, -6) and (4, 3)

$$
\begin{aligned}
& d=\sqrt{(7-4)^{2}+(-6-3)^{2}} \\
& d=\sqrt{3^{2}+(-9)^{2}} \\
& d=\sqrt{9+81} \\
& d=\sqrt{90} \\
& d=\sqrt{9(10)} \\
& d=3 \sqrt{10}
\end{aligned}
$$

As usually happens in math, I can't make these problems any more difficult - only longer.

Example 13 For instance, I could ask if a triangle with vertices of A($-2,2$, $\mathrm{B}(10,-3)$ and $\mathrm{C}(5,9)$ form an isosceles triangle.

To do that problem, I would have to find AB, AC and $\mathrm{BC}-$ three separate distance problems. If the distances of two sides were equal, then the triangle would be isosceles.

Review Questions

1. In mathematics, basic assumptions are called
2. The distance between points D and E is represented by
3. On a number line, the distance between two points with coordinates 3 and -5 is
4. If point T lies on $\overline{E B}$ but not on $\overline{E B}$, then the correct order of points B, E and T is
5. The statement "If $\mathrm{AB}=\mathrm{DF}$ and $\mathrm{DF}=\mathrm{RS}$, then $\mathrm{AB}=\mathrm{RS}$ " illustrates that the equality of numbers is
6. If a point A lies outside line t, the number of planes that contain point A and line t is
7. On the number line, point D has coordinate 4 and point E has coordinate 12. Point X lies on $\overline{E D}$ and $\mathrm{EX}=5$. The coordinate of X is
